KU LEUVEN

FACULTY OF ENGINEERING SCIENCE

Andrea Di Maria

Department	MTM (Materials Engineering)
PhD defence	23 August 2018
Supervisor	Prof. dr. ir. Karel Van Acker
Co-supervisor	Prof. dr. ir. Johan Eyckmans
E-mail	andrea.dimaria@kuleuven.be

The challenge of circular economy in the concrete sector:

Life cycle thinking approaches to assess the environmental and economic impact of alternatives to conventional concrete

Introduction / Goals

Among the traditional construction materials, concrete is the most commonly used in modern construction. The use of traditional concrete leads to two main environmental problems (highlighted in figure 1)

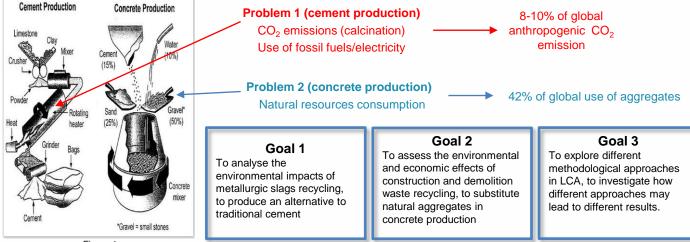


Figure 1

Research Methodology

3 case studies:

- Activation of stainless steel slag as a substitute to traditional cement
- Activation of zinc/lead production residues to produce inorganic polymer
- Recycling of construction and demolition waste to produce new high-quality aggregates for new concrete

4 methodologies used:

(1) Attributional LCA; (2) Consequential LCA; (3) Dynamic LCA; (4) Life Cycle Costing

Results & Conclusions

Main conclusions of the study:

- Environmental hotspots of all processes
- Economic barriers to the production of recycled high-quality aggregates for concrete production
- Influence of market dynamics and time-related effect on the environmental analysis

Major publication

- Di Maria, A., Eyckmans, J., & Van Acker, K. (2018). Downcycling versus recycling of construction and demolition waste: Combining LCA and LCC to support sustainable policy making. Waste Management. https://doi.org/10.1016/j.wasman.2018.01.028
- Di Maria, A., & Van Acker, K. (2018). Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization. Engineering. https://doi.org/10.1016/J.ENG.2018.05.008
- Di Maria, A. Di, Salman, M., Dubois, M., & Acker, K. Van. (2018). Life cycle assessment to evaluate the environmental performance of new construction material from stainless steel slag. The International Journal of Life Cycle Assessment, 1-19. https://doi.org/10.1007/s11367-018-1440-1